
AD-R192 466 FAULT DIAGNOSIS IN DISTRIBUTED COMPUTER NETNORKS(U) 1/1
NVAL POSTGRADUATE SCHOOL NONTEREY CA I DINCER DEC 07

UC LSAIFIED F/G 12/NL

iEElhEElhEEE
EhhhhhhDDADHD

'I-EE-ELhhI

U.111112-.0 l

Jil -. ,e-

111111.25Z- III I 111

Jill! £-IL£LUL' 'k

NAVAL POSTGRADUATE SCHOOL
Monterey, California

CC-

A SDTCD
MAY128

THESIS

FAULT DIAGNOSIS IN DISTRIBUTED COMPUTER
NETWORKS

by

Ibrahim DINCER

December 87

Thesis Advisor Jon T. Butler

Approved for public release; distribution is unlimited.

88~ r,1 027
.......... SS P

SECURITY CLASS; CAT ON O ri- S AGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSi"'CA''ON Ib RESTRICTIVE MARKINGS 41

UnclassifiedA / 71Ci 0(a
2&. SECURITY CASSiF-CATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECL.ASSIFICATIONiDOWNGRADiNG SCHEDULE Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS62-87

6a NAME OF PERFORMING ORGANIZATION 6o OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate Scho 1 (f applicable) Naval Postgraduate School62

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

Monterey, CA. 93943-5000 Monterey, CA. 93943-5000

Ba. NAME OF FUNDING, SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO

11 TITLE (Include Security Classification)

Fault Diagnosis In Distributed Computer Networks

12. PERSONAL AUTHOR(S)

Dincer. Ibrahim
13a. TYPE OF REPORT 113b TIME COVERED 14 DATE OF REPORT (Year Month, Day) 115 PAGE COUNT
Master's Thesis IFROM TO I 1987. December I 75

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Preparata-Metze-Chien, Computer-Aided-Design

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

* -- This thesis introduces the concept of a diagnosis algorithm in the
context of the Preparata-Metze-Chien (PMC) model. It represents a
Computer-Aided-Design (CAD) tool for use in analyzing such algorithms.
That is, with this tool, the user can establish a multiprocessor system,
a set of test outcomes and then analyze the properties of specified
distributed diagnosis algorithm. Examples in this thesis include a
system in which: 1. Correct diagnosisis-achieved in a small number of
iterations. 2. Correct diagnosis is never achieved. 3. An
oscillating situation exits in which, faulty processors become
alternately enabled and disabled..,-- .

20 DISTRIBUTION i AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSI FIED/UNLIMITED 0l SAME AS RPT 0l DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 4ic OFFICE SYMBOL
Prof. Jon T. Butler (408) 646-3299 62Bu

DD FORM 1473, 84 MAR 83 APR ed,tion may be used untI exhausted SECURITY CLASSIFICATION OF THIS PAGE
All Other editions are obsolete 9 u.S Gove,.ment Pinting office. IgO-4O6-24.

A .

Approved for public release; distribution is unlimited

FAULT DIAGNOSIS IN DISTRIBUTED COMPUTER NETWORKS

by
Ibrahim Dincer

Captain, Turkish Army
B.S., War Academy, Ankara, Turkey, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1987

Author:
Ibrahim Dincer

Approved by:
/Jon T. Butler, Thesis Advisor

NT!! CRA'M' Bruno 0. Shubert, Second Reader

I John P. Powers, Chairman,
j-[',., ',,,-.Department of Electrical and Computer Engineering

* , -Gordon E. Schacher

Dean of Science and Engineering

2E " q- ** ,,

TABLE OF CONTENTS

I. INTRODUCTION ... 10

A. NEED FOR STUDY .. 10

1. Preparata-Metze-Chien(PMC) Model 10

2. Perfect Tester ... 10

3. 1-Fail Safe Tester ... 10

4. 0-Fail Safe Tester .. 11

5. A B M odel ... 11

6. A . M odel ... 11

7. AX M od el .. 11

8. Partial Tester .. 11

9. Zero information Tester 11

B. PROBLEM ENVIRONMENT 12

II. BACKGROUND .. 14

A. PREPARATA-METZE-CHIEN(PMC) GRAPH MODEL 14

B. ONE-STEP T-FAULT DIAGNOSABLE SYSTEMS 17

1. Necessary And Sufficient Conditions 17

2. Optimal Design for one-Step T-fault diagnosability 18

C. SEQUENTIALLY DIAGNOSABLE SYSTEMS 19

D. GENERALIZATION OF FAULTS 21

1. tp-Fault Diagnosability .. 21

2. ti-Fault Diagnosability ... 21

3. t/s-D iagnosability .. 21

E. SMITH'S ALGORITHM ... 22

1. ST i .. 22

2. ST 2 ... 22

3. ST 3 .. 22

3

%1

Il. PROBLEM .. 24 IF

A. SIMPLE DIAGNOSABILITY TEST FOR MULTIPROCESSING

SY STEM .. 24

B. RECONFIGURATION 25

C. RELATIONSHIP BETWEEN ENABLED/DISABLED

UNITS AND SYSTEM RELIABILITY 26

IV. METHOD OF APPROACH 27

A. WHY A CAD-TOOL? ... 27

B. TOOL DEFINITIONS .. 27

C. TOOL SPECIFICATIONS 28

D. TOOL REALIZATION 31

V . RESULTS ... 33

VI. CONCLUSIONS AND RECOMMENDATIONS 45

A. CONCLUSIONS .. 45

B. RECOMMENDATIONS 45

APPENDIX A: SOURCE CODE OF CAD-TOOL 46

APPENDIX B: HAND CALCULATIONS OF DIFFERENT CASES 56

LIST OF REFERENCES .. 72

INITIAL DISTRIBUTION LIST .. 73

e%'.

LIST OF TABLES

1. Different Models of System Diagnosis 12

2. Menu of CAD-Tool.. 31

LIST OF FIGURES

2.1 Five Processor Multiprocessor System with

Faulty Units and Test Outcomes 14

2.2 Assumed Test Outcomes in Preparata-Met-Chien

M odel .. 15

2.3 A System and Associated Test Outcomes 16

2.4 An Example of Sequential Diagnosis Connection

for n=14 and t=6 ... 20

2.5 Five Processor Multiprocessor System for Two Arrangements of

Faulty Processors ... 22

4.1 Flow Chart of CAD-Tool ... 29

4.2 Detailed Flow Chart of CAD-Tool 30

5.1 Cad-tool menu and test outcomes 33

5.2 Case 1 initial condition .. 34

5.3 Case I first iteration .. 34

5.4 Case 1 second iteration .. 35

5.5 Case 1 third iteration ... 35

5.6 Case 3 initial condition .. 36

5.7 Case 3 first iteration .. 37

5.8 Case 3 second iteration .. 37

5.9 Case 3 third iteration ... 38

5.10 Case 6 initial condition .. 39

5.11 Case 6 first iteration .. 39

5.12 Case 6 second iteration .. 40

5.13 Case 6 third iteration ... 40

5.14 Case 6 fourth iteration .. 41

5.15 Case 19 initial condition ... 42

5.16 Case 19 first iteration .. 42

5.17 Case 19 second iteration .. 43

5.18 Case 19 third iteration .. 43

6

- - " ,,' " -. ",'_ . ''- '-_ " :', , , ,'b" "- .o ',a . u...... . ' " .3 . ." ' -.....

5.16 Case 19 first iteration .. 42I
5.17 Case 19 second iteration 43
5.18 Case 19 third iteration .. 43 o

5.19 Case 19 fourth iteration....................................... 44

5.20 Case 19 f ifth iteration.. 44

7P

ABSTRACT

This thesis introduces the concept of a distributed diagnosis algorithm in the context

of the Preparata-Metze-Chien (PMC) model. It represents a Computer-Aided-Design

(CAD) tool for use in analyzing such algorithms. That is, with this tool, the user can

establish a multiprocessor system, a set of test outcomes and then analyze the properties

of a specified distributed diagnosis algorithm.

Examples in this thesis include a system in which;

1. Correct diagnosis is achieved in a small number of iterations.

2. Correct diagnosis is never achieved.

3. An oscillating situation exists in which faulty processors become alternately

enabled and disabled.

'I,

0t

U%

ACKNOWLEDGEMENTS

I would like to thank to my advisor Professor Jon T. Butler for his valuable

assistance and patient guidance. I appreciate his great support and encouragement.

I have to express my deep respects to my government for sending me here for this

education.

I also would like to thank Dr. Dana Madison for his great contribution.

Special thanks to my wife Makbule and my son Melih for their continuous support.

,.J:
4'

a,

I;
9!

1. INTRODUCTION

A. NEED FOR STUDY

The advent of inexpensive microprocessor elements has made multiprocessor

computing networks much more practical. This fact has led to an increasing interest in

the high reliability of such networks. The prospect of ultra reliability has inspired

research into the use of computers where low reliability precluded its previous use. This

includes aircraft control systems, where the Federal Aeronautic Administration (FAA) has

specified as a standard probability of failure in a 10 hour operating period of 10 - [Ref. 1].

The traditional approach to computer reliability is through redundancy, where reliable

outputs are the result of a vote on three or more less reliable outputs. In the theory of

system diagnosis [Ref. 2], a graph is used to model a multiprocessing system where nodes

represent the processors and arcs represent tests between processors. One goal of the

theory is to determine what tests achieve the highest tolerance to faults. It has been

shown [Ref. 3] that for the same system reliability, greater throughput can be achieved

from system diagnosis approach than modular redundancy. Conversely, for the same

throughput, a system diagnosis approach yields greater reliability [Ref. 3].

Beginning with the Preparata-Metze-Chien model, many models have been developed

for system diagnosis. The best known models are [Ref. 41.

1. Preparata-Metze-Chien(PMC) model: This model was used in this research and

will be explained in Chapter HI. This model is represented by Ap in Table 1. 1.

2. Perfect Tester: In this model, test outcomes correspond to perfect diagnosis of

faulty units. In other words, if the tested unit is faulty (not good), no matter what the

status of testing unit is (faulty or fault-free), the test outcome will be fail(1). If the tested
.1

'p

.1

testing ntwhis mel is ore pentdiyca Ti Tale 1.1. oniceaigiteeti

3. hihFabilitafe tste:chi melrs neve hapnrorect zeulro. Thlabty eas thatsthred

mightrbe incorrthfa tst outcompues(. when felauilty pcunii its apa-reeu unit Thes
inldsarrf oto ytmweeteFddrlA.rnui ~mnsrto FA a

speifedasa sanar pobailtyoffaiur i 10 horpeaigeidof1 - [R.1]

test outcome will be 1), but there will never be any incorrect pass (0) outcome. It is

represented by Aw in Table 1.1.

4. 0-Fail safe tester: This model never has incorrect 1. That is, when a faulty unit

tests another faulty unit, the test outcome will be 0. This is an incorrect pass outcome.

However, there is no incorrect fail test outcome. The model is represented by Ay in

Table 1.1.

5. AB is a model in which a faulty unit will never incorrectly diagnose another faulty

unit. However, in this model a faulty unit testing a fault-free unit will produce 0 and 1

arbitrarily.

6. A g is a model in which a faulty testing unit may not correctly diagnose another

faulty unit. Test outcomes can be 0 and 1 arbitrarily.

7. Ax is a model in which a faulty testing unit always diagnoses a fault-free unit

incorrectly, producing fail test outcome. However, a faulty testing unit produces 0 and 1

arbitrarily for a faulty tested units.

8. Partial tester: In this model, there is the possibility that a fault-free testing unit

cannot correctly diagnose a faulty unit. This model is examined by Simoncini and

Friedman [Ref. 5]. They considered the problem where system tests may be incomplete,

i.e., that is a fault-free unit may be able to detect faulty units with percentage p (p <

100). This model is represented by Apt in Table 1.1.

9. Zero information tester: This model provides no reliable test outcomes. This

model was considered by Marion L. Blount [Ref. 6]. Several different fault detection

requirements can be addressed.

a. A fault-free unit can fail to diagnose another fault-free unit.

b. A fault-free unit can fall to diagnose a faulty unit.

c. A faulty unit can give a correct diagnosis of another unit (faulty or fault-free).

This model is represented by Ao in Table 1.1

swa-e A-v

Ac Aw AB Ay A.t AX Ap Apt Ao

aij
0-> 0 0 0 0 0 0 0 0 X

0->O 1 1 1 1 1 1 1 X X

0->0 0 1 X 0 0 1 X X X

0->0 1 1 1 0 X X X X X

0-Fault-free unit 0-Faulty unit

Table 1.1 Different models of system diagnosis

All the models mentioned previously apply to a graph theoretic system. Analysis of

such systems is typically done by hand calculation which limits the number of units.

System fault configurations is limited to some small numbers as well. Thus, the analysis

of such theory is difficult. Also, there is much interest in making the model more

realistic. This, in fact, inspired the models described. For example, AB proposed to

model tests among processors consisting of comparing results of computations. The goal

of this thesis is to further improve the model. Specifically, it addresses the problem of

reconfiguration, where there has been relatively little study so far.

B. PROBLEM ENVIRONMENT

The fault diagnosis problem is to determine faulty processors given the set of test

outcomes. Almost all previous studies have assumed a central diagnoser, which collects

all of the test results and identifies faulty processors from this. This assumption

simplifies the problem and avoids the complexities of reliable replacement. But a central

diagnoser is also a processor, which might fail. In this case, system diagnosis may not be

accurate. To provide accurate system diagnosis, the central diagnoser should be ultra

reliable. This will be expensive and will require extra maintenance effort. To overcome

12
_ €
]t €,

JS

these difficulties, distributed system diagnosis is proposed. In the distributed systems

proposed here, the hardware required to achieve reliability is simple and can be made

ultra reliable inexpensively.

13,

II. BACKGROUND

A. PREPARATA-METZE-CHIEN (PMC) GRAPH MODEL

A multiprocessing system is composed of n processors. Each processor is called a

unit (node) where a unit is a well-identifiable portion of the system which cannot be

further decomposed for the purpose of diagnosis. Units are indicated by Ui , 0 < i < n- 1.

These units must be powerful enough to test other individual subunits. A test

corresponds to an arc between processors with the arrow pointing to the tested unit. Arcs

are denoted by a i j, where i is the unit number which is doing the test, and j is the unit

number which is tested. Each test has two outcomes, pass and fail; O's correspond to

pass test outcomes and l's correspond to fail test outcomes. Faulty processors are

indicated by X's. Figure 2.1 shows a 5 processor multiprocessor system, where U2 and

U3 are faulty. A test is meaningful only if the testing unit itself is fault-free; otherwise

the test outcome is unreliable.

U 0

0 o

0
U 4 0U

U2

Figure 2.1 Five processors multiprocessor system with faulty units and test outcomes

14

Figure 2.2 shows how test results occur in the model we have chosen. The top arc

goes from a fault-free node to a fault-free node and for this case a 0 (pass) outcome is

always produced. The second arc goes from a fault-free node to a faulty node and for this

case a 1 (fail) outcome is always produced. The third arc goes from faulty node to

fault-free node and fourth arc goes from faulty node to faulty node. The outcomes of the

last two cases are unpredictable and can be 0 or 1 arbitrarily.

Definition 1: The set of test outcomes aij represents the syndrome of the system;

obviously aij can be assigned if and only if the corresponding testing link exists. [Ref. 3:

p-8481. In Figure 2.1 the syndrome of the system for one loop will be (ao, a12, a23, a34,

a40) where the left to right arrangement of the aij is intended to reflect the direction of the

loop. Diagnosis is the process of determining the faulty units given a set of test outcomes.

At this point, we need to define distinguishable and indistinguishable fault patterns.

U. U.

ii-

-%0 -0 -
0 a i

F

aij

a,, X

0 Fauft-free Faul ty

Figure 2.2 Assumed test outcomes in Preparata-Metze-Chien Model

15 ,a

S,

, 4 . 1 a . , $.t ~ V . a ~ . % V % ~ - * ** *~*S * * S ' ,SI ,

U
0

a 0 1 a 1 2 a23 a34 a

a) X 0 0 0 1

b) 1 X 0 0 0

C) X X 0 0 1

Figure 2.3 A system and associated test outcomes

Faults in units Ui and Uj are distinguishable if the syndromes associated with them are

different. The two faults are indistinguishable if the syndromes associated with two

different faults are the same. These definitions may be directly extended to

distinguishable and indistinguishable sets of faults called fault patterns. Figure 2.3

depicts a system and its test outcomes for three different cases. If Uo is faulty, the

syndrome shown in line a is produced. If Ui is faulty, the syndrome shown in line b is

produced. They are distinguishable since the value a4o is different. The multiple fault

pattern (Uo, Ui are faulty) has the syndrome in line c, and since it may be the same as the

syndrome for faults {Uo (depending on the unpredictable values of a01 and a12), {Uo)

and {Uo, U1} are indistinguishable.

16

4",

B. ONE-STEP T-FAULT DIAGNOSABLE SYSTEMS

Definition 2: A system of n units is one-step t-fault diagnosable if all faulty units

within the system can be uniquely identified, provided the number of faulty units present

does not exceed t [Ref. 3].

1. NECESSARY AND SUFFICIENT CONDITIONS:

In this section we investigate the relationship between n and t (the number of

faulty units), for one-step diagnosable systems.

rheorem 1: If a system with n units is one-step t-fault diagnosable, then n > 2t+l.

Conversely, if n > 2t+l, it is always possible to provide a connection to form a system

that is one-step t-fault diagnosable [Ref. 3].

Proof: To prove the converse, we construct a maximally connected graph, that is,

we make a connection among all possible pairs of these n units in both directions. One

characteristic of such a graph is that there exists a loop connecting any subset of n units.

It is easily verified that given any loop connecting z units with all test outcomes in the

loop exhibiting the value 0, then the z units in the loop are either all faulty or fault-free.

In particular, if z > t+l, all units in the loop must be fault-free. Otherwise, this would

violate the hypothesis on the maximum number of faulty units. The location of a loop of

t+l or more fault-free units will essentially have completed the diagnosis process, and any

identified fault-free unit will immediately locate all faulty units through direct links.

Since the system can have at most t faulty units, it must contain at least t+l fault-free

units; hence the existence of a loop of t+ 1 or more fault-free units is guaranteed.

For a system with n < 2t+l units and an arbitrary connection, we show the

existence of two distinct allowable fault patterns that may result in exactly the same

syndrome. An allowable fault pattern for our specific case is any fault pattern with at

most t faulty units. We can consider n as odd and even in two separate cases; but both

cases are analogous. Assume n < 2to, with tO < t. Consider the case of an even number of

nodes. We partition the system into two parts, PI and P2, each with the same amount of

units to. Suppose all units in PI are faulty and all units in P2 are fault-free. Then, all links

17

5 ,.. 5,"5 , " '

-'|

between units within P2 will have a value 0 and all links pointing from units in P2 to units

in Pi will have a value 1. Since the units in Pi are faulty, many possible configurations of

values may occur. One such possible configuration is for all links between units in Pi to

have a value 0 and all links pointing from units in P1 to units in P2 to have value 1. From

symmetry, it is seen that when all units in Pi are fault-free and all units in P2 are faulty,

the same pattern of test results may occur. Hence, it is not always possible for the system

to differentiate between the two allowable fault patterns and the system is not one-step

t-fault diagnosable [Ref. 3: p-850].

2. OPTIMAL DESIGNS FOR ONE-STEP t-FAULT DIAGNOSABILITY:

For this model it has been shown that the number of units n must be at least 2t+1

for a system to be one-step diagnosable. Now we will try to get the lower bound on the

number of units that concurrently test a particular unit.

Theorem 2: In a one step t-fault diagnosable system, a unit is tested by at least t

other units [Ref. 3: p-850].

Proof: On the hypothesis that the system is one-step t-fault diagnosable, we may

assume that U1, U2 Uk are all the units in the system which test a certain unit U0 and

k < t. Consider the case in which U1, U2, ...,Uk are all faulty. The outcome of the tests

performed by these faulty units may, of course, assume arbitrary values. Hence there is

no reliable test being performed on Uo, and the two legitimate fault patterns (U1, U2,

.... Uk) and (Uo, U1, U2, ...,Uk) neither of which has more than t faults are not

distinguishable. Hence according to Definition 2, the system is not one-step t-fault

diagnosable. Since a contradiction has been arrived at, the assertion stated in the theorem

is proved.

Definition 3: A one-step t-fault diagnosable system is said to be optimal if n =

2t+l and each is tested by exactly t units [Ref. 3: p-850].

In general, many optimal designs exists for a system. To describe these families

of designs Dt, it is convenient to designate the n units by Uo, U1, ...,Un-1, and to perform

any computation on the subscripts modulo n. We will consider a class of designs in

18

MRARARI

which the testing connection at each unit is identical. In fact, whether there is a testing

link from ui to uj depends entirely upon the value of I=j-i (modulo n). A test exists if and

only if 1 < 1 < t. Preparata, Metze and Chien [Ref. 2] showed that a design Dt is an

optimal one step t-fault diagnosable system.

C. SEQUENTIALLY DIAGNOSABLE SYSTEMS:

Definition 4: A system of n units is sequentially diagnosable if at least one faulty unit

can be identified without replacement, provided the number of faulty units present does

not exceed t [Ref. 3: p-849].

It is obvious that every system which is one-step t-fault diagnosable is also

sequentially diagnosable. But a system which is sequentially diagnosable may not be

one-step t-fault diagnosable. In the previous section, we have seen that nt links are

required for a system of n units to be one-step t-fault diagnosable (design Dt). The

investigation of sequentially diagnosable systems is motivated by the expectation that

fewer test links are required in such systems. Theorem I is valid for sequentially

diagnosable systems also. Hence for any sequentially t-fault diagnosable systems n >

2t+ 1.

Theorem 3: There exists a class of designs with N=n+2t-2 that are sequentially t-fault

diagnosable [Ref. 3: p-852].

Proof: Consider the following design. First, connect all units Uo, UI Un-i in a

loop such that for every i there is a link from Uj to Ui+i (all subscripts are taken modulo

n). Secondly, select a subset Si of 2t-2 units from the set (U1, U2, U3, ...,Un-2) and

establish a link from each unit of SI to Uo. This is shown in Figure 2.4. Let the number

of testing signals from Si and Un-i to Uo having the value 0 (1) be no (ni). The following

cases are possible:

Case 1: nl>t. The assumption (U0 is not faulty) implies that ni > t units are faulty,

thus violating the hypothesis on the maximum number of faulty units. Therefore ni > t

implies Uo is faulty.

19

Case 2: nl<t. The assumption (Uo is faulty) implies that, no > t-1 more units are

faulty. If ni < t, nl+n2=2t-2 and assume nl=t-1. So no=2t-2-ni. If we put ni=t-1, then no

= t-1. For ni = t-2, t-3 .. and so on, no > t-1 but this also violates the hypothesis.

Therefore ni < t implies Uo to be not faulty.

Case 3: ni=t. Let's consider the set S'=Si U Un-1 U Uo for a total of 2t units. If Uo

is not faulty, the set contains nl=t faulty units; if Uo is faulty, the system contains Uo and

no = t- 1 additional faulty units, for a total of t. In both cases the set contains t faulty units.

We conclude that all units of the system not contained with in the set S' are not faulty and

at least one fault-free unit can be identified. Therefore, ni = t implies the existence and

identification of at least one fault-free unit.

To locate at least one faulty unit we proceed as follows. In case 1, Uo is the faulty

unit. In cases 2 and 3 we have located at least one fault-free unit. To locate a faulty unit

we simply travel along the loop of testing links in the direction of arrows. We follow the

test signals until we see a 1 for the first time, the unit being tested by this link is faulty

[Ref. 3: p- 8 52). So considering all of the three cases above, we have identified at least

one faulty unit; which is necessary and sufficient for sequential diagnosis.

00
o1 0

02

-. -0
....

0
*e

Figure 2.4 An example of sequential diagnosis connection for n=-14 and t=6

20

D. GENERALIZATION OF FAULTS

tp-fault diagnosability: A system is tp-diagnosable if and only if the application of

the test set identifies precisely which faults are present, provided the number of faults

does not exceed tp [Ref. 9]. (This is precisely one-step t-fault diagnosability.)

The major part of the self-diagnosability of systems has assumed that only permanent

(solid) faults can be present. Consideration of intermittent faults is generally difficult

since it requires a modeling of the behavior of these faults in a system and also requires

interactive testing strategies to detect faults. Mallela and Masson [Ref. 10] consider the

effect of intermittent faults in diagnosable systems. The existence of both permanent and

intermittent faults in a system, for example, affects the test outcome which is received

after repeated applications of the test routines. This outcome may generate an incomplete

diagnosis of faulty units, since not all the faulty units in the system may be detected.

ti-fault diagnosability: A system is ti-fault diagnosable if in the presence of ti

intermittent faults no fault-free unit will ever be diagnosed as faulty, and diagnosis will be

at worst case incomplete [Ref. 41.

In general, the fact that a system is tp-fault diagnosable does not necessarily imply

that it is also ti-fault diagnosable. Mallela and Mason also give necessary and sufficient

conditions for one-step ti-fault diagnosability.

t/s-diagnosability: A multiprocessing system is t/s-diagnosable if one can always

identify a set of processors of size s or less which contains all permanently faulty

processors, provided there are no more than t-faulty processors. In general, t < s, and so

there is a relaxation of restriction in previous studies that no fault-free processors can be

replaced [Ref. 71.

E. SMITH'S ALGORITHM:

Consider three replacement algorithms [Ref. 81 for faulty processors:

STI: At each step perform the tests and replace processors which fail at least one

test, with randomly chosen spares. If all test results are pass, the system is assumed to be

correct.

21

ST2: At each step, perform the tests and replace processors which fail the maximum

number of tests. Replaced processors are placed back into the set of spares. If all test

results are pass, the system is assumed to be correct.

ST3: At each step, perform the tests and replace processors which fail the maximum

number of tests. Put these into the SPARE-U and replace them with randomly selected

spares in SPARE-L If the number of processors in SPARE-I are not sufficient, then

choose any additional needed spares randomly selected from SPARE-UL If all test

results are pass, the system is assumed to be correct (initially, all spares are in SPARE-I

and SPARE-II is empty).

STI is fast but tends to replace many fault-free processors (those which fail at least

one test by fault-free processors). ST2 replaces fewer fault-free processors, but it is

slower. ST3 is the most sophisticated, since it tends to maintain an enrichment in the set

of fault-free processors, and resorts to selection of suspected faulty spare processors only

when necessary [Ref. 81.
) ,

d-disabling rule: Processor U1 is disabled (e.g: not allowed to participate in

computation) if and only if Uj fails d or more tests by enabled processors [Ref. 7]

,a,
UO U0

0 0NO 0 C
U Q Q U 1 40 0 1°,0~ 1ou,°

U 0o0 U u 0 Q 1 0 U2

(a) (b)

Figure 2.5 Five processor multiprocessor system for two arrangements of faulty
processors

22

r. r '... . .• " .t,',t%
°

". ', q ., g = - . . W *A * 9.
"

. -
,

Consider the 1-disabling rule in Figure 2.5(a) and assume U2 and U3 are faulty and

enabled. Then U4 is disabled even though it is fault-free. Uo is also fault-free and

disabled. However, since Ui fails no test and it will become enabled permanently. It

follows that U2 and U3 will eventually be disabled. Thus fault-free nodes U4 and UO

which were originally disabled will become enabled permanently. Consider the system in

Figure 2.5(b), where there are also two faulty units, and assume the 1-disabling rule

applies as before. If U2 and U4 are enabled, before any of the processors are enabled, the

fail test outcomes they produce disable Uo, Ui and U3. Since all fault-free processors are

disabled and the tests among faulty processors are pass, both faulty processors are

enabled. Unlike the case just discussed, the system will never correct itself. Thus, a

permanent situation exists where all faulty processors are enabled and all fault-free

processors disabled. In the same figure, if we apply the 2-disabling rule with the same

initial conditions (e.g: U2, U4 are faulty and enabled), the fault-free processors will

eventually become disabled, while only one of the faulty processors will be disabled.

Thus, the 1-and 2- disabling rule lead to an unsatisfactory diagnosis.

w

23

MSS

III. PROBLEM

A. SIMPLE DIAGNOSABILITY TESTS FOR MULTIPROCESSING SYSTEMS

Recall that we are interested in distributed fault diagnosis of the system, since ultra

reliability can be achieved less expensively. The basic idea behind distributed

self-diagnosis is that the diagnosis algorithm is executed on the remaining intact units of

the system. In contrast to the central diagnosis which assumes an external (perfect) unit

for computing diagnosis results, distributed diagnosis is performed throughout the system.

First, a node is diagnosed by its immediate neighboring nodes. In a second step, these

local diagnosis results are used to disable processors.

To achieve distributed fault diagnosis in a system, each unit is equipped with

disabling circuitry. Thus, testing processors can determine the status of the tested

processor. The problem of identifying how many faulty processors can be tolerated

before it is impossible to correctly identify them is a very difficult task in general

multiprocessing systems. For example, in some cases as is shown in Chapter II, Figure

2.3, the two different fault patterns produce the same test outcome (syndrome).

The problem of locating faulty processors within a multiprocessor system by

temporarily halting normal operation and placing it in a diagnostic mode has been

studied using the PMC model. When the number of modules in the system is large, some

of them will be idle at a given moment. A test may be any sort of check by one processor

on the operation of the other, including applying test vectors and checking resulting

outputs. In a concept introduced by Nair, Metze, Abraham [Ref. 9] called "roving

diagnosis". One part of the system diagnoses a second part, while the remainder of the

system continues normal operation. The part most recently diagnosed as fault-free then

takes is turn in diagnosing other parts. Thus, there appears to be a subsystem of

diagnosing and diagnosed units which "roves" through the system until no parts of it

remains undiagnosed. However roving diagnosis, must ensure that first diagnosis will

produce unique, identifiable results. The checks are performed at the system level on data

elements that constitute the results of computations on these systems. It is assumed [Ref.

10: 2981 that each processor has a local memory on which it performs reads and writes.

24

-. ~-----------------------------.'. -N

In addition, it can communicate with other processors in the system through the buffers at

various input and output ports. A processor cannot read or write from any other

processor's local memory even in the presence of a fault. A fault is any condition that

causes a malfunction in a single processor while performing operations.

B. RECONFIGURATION

Definition 5: A system is c-correctable using the d-disabling rule if and only if:

1. All faulty nodes are eventually permanently disabled.

2. All fault-free processors are eventually permanently enabled provided there are c

or fewer faulty nodes [Ref. 7].

The main goal in system configuration is to switch-in all fault-free units and to

switch-out all faulty units. But this switching is not between two working systems, just

between working system and spares. The goal is not only to switch-out the faulty units

but also keep the working system functional. That gives more flexibility to the system

but increases the cost. The problem is to derive a distributed strategy for correct

switching which is insensitive to the arrangement of faulty processors. Sometimes it may

be difficult to replace a specific processor, so rearrangement of applied tests can give

more accurate results. A flexible test arrangement will allow an approach which views

the diagnostic task as one of arranging processors into two groups, a working group and a

spare group. Another approach is to have three groups, one group for critical operations,

one for noncritical operations, and one for spares. However in this thesis, we will

consider only the first approach.

C. RELATIONSHIP BETWEEN ENABLED/DISABLED UNITS AND SYSTEM
RELIABILITY

In an implementation of distributed diagnosis, to have correct diagnostics, two major

important problems must be considered:

1. Reliable implementation of the disabling criteria and function.

-'a

25

L.1, u

2. Reliable transmission of appropriate test (pass, fail) and result signals of disabling

criteria (enabled or disabled) for system units.

It should be noted that in distributed diagnosis, only local information is used to

identify faulty processors. In central diagnosis all test results are used. Thus, we would

expect distributed diagnosis to be less accurate. This manifests itself in a fewer number

of faulty nodes which can be tolerated in distributed diagnosis.

26.

1L-_I .7 k.- kr V- - I- I'L_ 1

IV. METHOD OF APPROACH

A. WHY A CAD-TOOL?

Our approach to the problem of developing diagnosis strategies is to develop a CAD

(Computer Aided Design) tool for the simulation of different fault patterns and different

reconfiguration strategies. Previously all studies have used hand calculations for this

purpose. When the number of units in the system has increased to more than seven, hand

calculations becomes complex. Thus, the user can only simulate a limited number of

units and fault patterns. Using the CAD-tool, the user can simulate from 2 to 20 units

with various fault patterns. The restriction of 20 units is due to limitations of the monitor

screen.

Thus, the tool facility gives the user an opportunity of simulating a large number of

units and fault patterns in a system. The number of units in a network is known in

advance and can be predefined in to the tool-program. The names and number of faulty

nodes are determined by the user. Testing connections can be predefined by the user or

the program. Only the test procedure (worstcase or user_defined-case) can be chosen by

the user. Also the user defines the disabling criteria. After input by the user, the

CAD-tool determines test results, disabled, enabled units and then displays the system in

a control unit monitor. By using the CAD-tool, a computer network is automatically

controlled without any hand calculation.

B. TOOL DEFINITIONS:

This CAD-tool is written in the C programming language [Ref. 12] using PMC graph

model. The terms used in the program are listed below and given short explanations:

N=The number of units in the system (may change from 1 to 20).

f=The number of faulty nodes(0 < f< N-i).

T=The number of units which tests one unit. This number is the same for all units.

Test results according to test connection are determined by the program reflecting the user

desire as a worst-case or arbitrary case.

27

For the worst-case, the program itself determines all test results. That is, faulty testing

units produce fail (1) test outcome for fault-free and pass (0) test outcome for faulty

tested units. This information is completely opposite to the status of the units. This is the

reason it is called worst case. For the user defined .(arbitrary case, test outcomes for

faulty testing units (for faulty or fault-free tested units), are defined by the user.

d=Is the disabling criteria which is defined by the user. If a tested unit has, at least d

fail test outcomes by enabled units, the unit will be disabled.

C. TOOL SPECIFICATION

Figure 4.1 shows the flowchart of the main body of the system tool. As can be seen,

the user can specify initial conditions and then allow the system to execute diagnostic

steps one after the other.

Figure 4.2 shows a more detailed flowchart of the program. First, the user defines the

number of units in the system. If this number is less than 0 or greater than 20, the

program produces an error message. The user defines the number and the names of faulty

nodes. Next, the user defines T (the number of units testing one unit) and the test

procedure (as worst case or arbitrary case). The program determines the test results and

displays them onto the screen. The user defines the disabling criteria, the number and

names of enabled units (all units are disabled initially). The tool displays the whole

system in the initial conditions by calling the subroutine drawing.

28

ENTER NUMBER
OF UNITS (N)

OBTAIN TEST .

PROCEDURE

F ROM USER

OBTAIN DISABL.
CRITERIA F ROM4

USER

DISPLAY THE
SYSTEM

NOYE

_________DONE__ ? STOP

Figure 4.1 Flow chart of CAD-tool

29

.j,1

SYSTEM GET THE TEST
SSE jRESULT FROM

SET-UP USER

ENTER NUMBER DETERMINE THE

OF UNITS (N) TEST RESULTS

isCRITEIA (0)

< N 20FROM
USER

DISPLAY THE

SYSTEM IN

I.C

ENTER (F),

NUMBER OF

FAULTY NOOES APPLY THE

DISABLING

CRITERIA

OBTAIN TEST

PROCEDURE

FROM USER DSLYTHE
"SYSTEMAFTER I _N

B. Y TEST N
B RESULT

CASE U.. DONE ? N

Figure 4.2 Detailed flow chart of CAD-tool

30

To see the application of the disabling rule, the user selects option #5 from the menu

shown in Table 4.1. Then, the program determines the enabled and disabled units and

displays the first iteration by calling the drawing subroutine. The user can go onto more

iterations with the same conditions. After some number of iterations, the user can exit the

program or go back to the beginning, where he/she can simulate another system with

another conditions.

1. INTRODUCTION

2. SYSTEM SETUP

3. SET TEST RESULTS

4. SET THE DISABLING CRITERIA

5. APPLY DISABLING RULE

6. EXIT

Table 4.1 Menu of CAD-tool

D. TOOL REALIZATION

The CAD tool is made up of five main parts (subroutines). The first, menu option #1,
gives a brief explanation of the program. Option #2 sets up the type of system, number

and names of units, number and names of faulty units. Option #3 sets up T, and test

procedure. Option #4 sets up the disabling criteria, number and the names of the enabled

units. Then it displays the system initial conditions calling the subroutine drawing.

Option #5 applies the disabling criteria and determines the enabled and disabled units,

then it displays the system. In the drawing subroutine, enabled fault-free units are green,

enabled faulty nodes are also green with X's inside circles. Disabled fault-free nodes are

red and disabled faulty nodes are red with X's inside circles. Test results are represented

by the color of testing arrows. A green arrow means a pass (0) test outcome, and a red

arrow means fail (1). Each time, after going through each option, the menu comes onto

the screen. So if the user makes a mistake somewhere in the program, he/she can correct
sP,

31 1,

A'-

it easily, choosing the same option from the menu. The main part of program is very

straightforward and just calls the subroutines according to selected menu options.

p32

%A

ai,

4,,

V. RESULTS

Figure 5.1 shows a photograph of the CAD-tool menu. Figures 5.2 through 5.5

shows the initial condition and three step iterations of a five unit multiprocessor system.

In this system U2 and U3 are faulty and enabled initially and shown with color green,

other units are disabled and shown with color red. The disabling criteria is 1 and the test

results are the worst case. After the first iteration units Uo and U4 are disabled (red) and

all the other units are enabled (green). After the second iteration U I is enabled and all

the other units are disabled. After the third iteration, all faulty units are disabled (U2, U3)

and all fault-free units are .:nabled. In this case, the 1-disabling criteria gives the desired

results. This example is explained in Appendix B as Case 1.

Figure 5.1 CAD-tool menu and test outcomes

33

'%,i " " '% " ' " "% " " ' " v " ' v ' "v 'v " " " ' . . , .

Figure 5.2 Initial condition

Figure 5.3 First iteration I

34

r ~ 7 ~ w z r w . --

Figure 5.4 Second iteration

Figure 5.5 Third iteration

35

Figures 5.6 through 5.9 show another five unit multiprocessing system. In this

example, Ui and U4 are faulty and enabled initally. Disabling criteria is 2 and test results

are also worst case. After the first iteration all units are enabled. After the second

iteration only U4 is disabled and all the other units are enabled. Figure 5.8 and Figure 5.9

both are the same. This means that the system stays in that state and cannot correct itself.

This example is explained in Appendix B as Case 3.

Figure 5.6 Initial condition

36

w WNm W I

Figure 5.7 First iteration

mP

4m

V..
Figure 5.8 Second iteration

37

Figure 5.9 Third iteration

Figures 5.10 through 5.14 show a seven unit multiprocessor system. Ix. this system,

Ui, U3, U5 are faulty units and enabled initially. Test results are also worst case and

disabling criteria is 2. After the first iteration, U4 and U6 are disabled, all the other units

are enabled. After the second iteration U3, U4, U6 are disabled and the other units are

enabled. After the third iteration only U3 is disabled. After the fourth iteration all faulty

units are disabled and all fault-free units are enabled. This indicates the 2-disabling

criteria works and the system corrects itself. This example is explained in Appendix B as

Case 6.

38

- ' l. ee

* - t d S - - t - *~ .. *- - **** '*** \. - - -

I

5,.

5~*

5-

Figure 5.10 Initial condition

St
5".

.1*

F

-S

5.'.

.5'

Figure 5 11 FIrst iteration

5-

5-

39 .5

5-
S~S

S.

.s' ~ 5' '5" s------5- V '.5 5' *JS 'J. 5555 ~ ~~j5i~** ~,. 5 . 'S 'S -. 5-

i

,

:

Figure 5.12 Second iteration
a:

.

1

Figure 5.13 Third iteantionj

a,4

401

% .. -. C . a-

Figure 5.14 Fourth iteration

Figures 5.15 through 5.20 show a six unit system. In this system U1, U3, U5 are

faulty units and the disabling criteria is 2. Test results are arbitrary (user defined) and are

defined as followes: faulty testing units produce fail (1) test outcome for faulty tested

units and produce pass (0) outcome for fault-free tested units. In this example, faulty

units are alternately disabled and enabled. Thus the system will never correct itself. It

displays an oscillation of period six. This example is explained in Appendix B as Case '

-, 19.

41

* r
defied s flloes:fauly tstig uitsprouce ail(1)tes oucomeforfauty estd "

* 41

unt adprdceps (0 o utcm forfaltfre tstd nis, -hi eampefalt

Figure 5.15 Initial condition

Fiue516Frtitrto

V42

.,

Figure 5.17 Second iteration

L

i'C

43 "'

J.

'II

ap

Figure 5.19 Fouth iteration

A. 4

" .

p-]

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

This thesis introduces distributed diagnosis. The analysis of distributed diagnosis is

difficult without a CAD tool. In this research, a CAD-tool has been developed based

upon the PMC graph model. Using this tool, the user can simulate various number of

configurations and fault patterns. The tool provides a step by step procedure for user to

follow. In this tool, the information related to the faulty nodes (the numbers and the

names of faulty nodes) is provided by the user. Then the user simulates the system as

much as wanted.

In the CAD-tool, fail test outcomes by enabled porcessors for each unit are counted

and compared with the disabling criteria. If fail test outcomes exceed the criteria, then the

unit is disabled. Unlike the central diagnosis algorithm which eventually settled on a final

arrangement of processors, the algorithm denoted here develops dynamic behavior. '4

B. RECOMMENDATIONS

It is expected that this tool will be used to study optimum disabling criteria for various

systems. For example, we hope that it will free the user of the tedium of generating

examples, allowing him to prove properties of the system. One possibility is that it could "".

be used in a knowledge base system, which would be used to prove properties of the

disabling criteria.
,5%

45.

4,%

3'.

.4

APPENDIX A

SOURCE CODE

/* This menu helps the user to determine the main selections of the program.
If the user wants to run the program for very FIRST TIME should choose the
option #2.To choose INTRODUCTION is outside this restriction.*/

char fault array[20],disable_array[20],dis_res_array[2]

char U;
int testarray[20][20];
int N,fmax,f,T,k,j,i,no_units_set,p,w,l,dis crit,count;
int no en set;

int response;
menuo)

int response;

printf(" \n");
printf(" = M E N U = \n");

printf(" -------------------------------- \nit);
printf(" \n");
printf(" 1. INTRODUCTION \n");
printf(" \n");
printf(" 1 2. SYSTEM SETUP \n");
printf(" 1 \n");
printf(" : 3. SET THE TEST RESULTS \n");
printf(" \n");
printf(" 4. SET THE DISABL. CRITERIA 1\n");
printf(" \n");
printf(" 5. APPLY DIS.CRITERIA \n");
printf(" n") ;
printf(" 6. EXIT \n

printf(" ------------------------------- \n\n");

printf("ENTER THE OPTION NUMBER FROM THE MENU \n\n");
}

introduction()

pr intf("****************.****** **n) ;

printf("* *in");
printf("* THESIS TOPIC: FAULT TOLERANT COMPUTING *\n");
printf(" *\n");

printf("* IN DISRIBUTED COMPUTER NETWORKS. *\n");
printf("* *\n");

printf("* Author: Ibrahim DINCER *\n");
printf("* *\n");
printf("* Thesis Advisor: Prof. Jon T. BUTLER *\n");
printf("* *\n");
printf("* NAVAL POSTGRADUTE SCHOOL *\n");printf("* *\n");

printf("* ELECTRICAL AND COMPUTER ENGINEERING *\n"); b

46

': : iP%_ %% .~~. .%-..''~ ... ~ ' -%* & , -

printf(" *\n");

printf("*EXTENSION :3299*\n");printf("* ETNON:99*\nit);

printf("* DATE : APRIL 23,1987 *\n");

printf(" This program is for simulation of distributed \n");

printf("diagnosis algorithm in a computer network.For this\n");

printf(" purpose PREPARATAMETZECHIEN is used. The number\n");
printf(" \n");
printf(" of nodes in the system is restricted TO NO MORE \n");
printf(" \n");
printf("THAN 20.The user enters the number of nodes,faulty\n");
printf(" \ni);
printf("nodes in the network,test procedure and disabling \n");
printf(" \n");
printf("criteria.The program displays the network,test \n");
printf(" \ni);
printf("outcomes and shows enabled faultfree nodes and \n");
printf(" disabled faulty nodes. \n");
printf(" N= NUMBER OF NODES IN THE SYSTEM \n");
printf(" \n");
printf(" D=DISABLING CRITERIA FOR FAULTY NODES \n");
printf(" \n");
printf(" F= NUMBER OF FAULTY NODES IN THE SYSTEM \n");
printf(" \n");
printf("FMAX=NUMBER OF ALLOWED FAULTY NODES IN THE SYSTEM \n");
printf(" \n");
printf("T= NUMBER OF UNITS WHICH ARE TESTING ONE UNIT \n");

} '

/* THIS SUBROUTINE DEFINES THE NAMES OF NODES AND ALSO DEFINES THE FAULTY
NODES IN THE SYSTEM */

units(

printf(" THE UNITS OF THE SYSTEM ARE\n\n");
for(i=0; i<N; ++i)

printf("%cd,",'U',i);
}

printf("\n");
printf(" ENTER THE NUMBER OF FAULTY NODES \n");
scanf("%d",&f);

/* THIS TWO LOOPS KEEP THE USER IN THE ALLOWED LIMITS FOR
FAULTY UNITS*/

while(f<= t! f>N)
{ p-S

printf(" 'F' SHOULD BE GREATER THAN ZERO "); I

printf(" AND LESS THAN N \n"); '

scanf("%d" ,&f);

47

printf("THERE ARE %d FAULTY NODES \n\n",f);
J=1:

/INDICATES THE ARRAY TO DEFINE THE FAULTY NODES *
for(i=0; i(=N-1 ; ++i)

fault-array[il='G';/*INITIALLY ALL NODES ARE GOOD*/

no units set=1;
printf("ENTER THE FAULTY UNIT NUMBER ONE AT A TIME \n");
while(no-units-set <zf)/*REPEAT UNTIL IF' UNITS ENTERED

scanf ("%d" ,&i);
while(i>(N-1) 1:i(0)

printf(" UNIT NUMBER IS NOT VALID, TRY AGAIN]\n");
scanf ("%d" ,&i)

if (fault_arrayLP!=='B')

printf("THIS UNIT IS PREVIOUSLY DEFINED AS")
printf(" FAULTY,TRY AGAIN]\n\n");

else

fault-array[i] = 'B';
printf(" FAULTY UNIT # %d IS U%d \n\n",J,i);

++no-units-set;

/* THIS SUBROUTINE SETS UP THE SYSTEM TO BE TESTED ~

syssetup()

printf("I TO DETERMINE THE NETWORK ENTER ONE OF THE")
printf(" OPTIONS BELOW\nII);

printf("\n")

printf(" 1.DESIGN \n\n");
printf("I 2.ARBITRARY SYSTEM \n\n");
scanf("%d" ,&p);
printf(I"p=%d\n\n" ,p);

if (p==l)

* printf("ENTER THE NUMBER OF NODES IN THE SYSTEM\n\n");

scanf ("%d" ,&N);

48

while(N>20 :: N<=0)

printf("THE NUMBER OF UNITS IS NOT VALID,");
printf(" TRY AGAIN \n");
scanf ("%d",&N);
printf("N=%d\n\n" ,N);
}

units();

else

printf(" THIS SYSTEM WILL BE DEFINED LATER \n\n");

/* THIS SUBROUTINE DETERMINES THE TEST RESULTS FOR THE SYSTEM.IN THE
'WORST CASE' ,PROGRAM DETERMINES ALL THE TEST RESULTS; FOR THE ARBITRARY CASE
TEST RESULTS FOR THE TESTED UNITS BY 'FAULTY' TESTING UNITS WILL BE DEFINED
BY THE USER. */

test

printf(" 'T' IS THE NUMBER OF UNITS TESTING ONE NODE;ENTER"); %

printf("'T' \n"); I
scanf("%d",&T);
printf(" DO YOU WANT 'WORSTCASE' TEST RESULTS?IF YES,ENTER");

pr intf("1 \n");

scanf("%d" ,&w);
printf("w=%d\n" ,w);
if (w==1)

for (j=1;j<=T;++j)
{

for (k=O;k<=N-1 ;++k)
(

l=k-j;
if (1<0)

(

1=1+N;

if((fault-array[k!=='B') &&(fault-array[l!=='B'))
(

testarray[k! [j '=0;
I

else if((fault_array[k'=='B') ::(fault_array[l!=='B'))
(

testarray[kj ' =1;

else

(49I

(test_array~k!J'=0;

else /*THIS PART user-defined ARBITRARY TEST RESULTS ~

for (j=l ;j<=T;++j)

for (k=0;k<=N-1;s+k)

l=k-j ;
if (1<0)

1=1+N;

if (fault array[l1=='B')

printf("TEST RESULT NODE #%d BY NODE #f %d IS ".,k,l);
scanf('%d" ,&test_array[k) [aJ)
while(test_array[k][J]=0 && test array[k][jj=1)

printf("TEST RESULTS SHOULD BE 0 OR 1 \n");

scanf("%d" ,&test_array~k][U]);

printf("test_array[%d][%d]=%d\n",k,j~testarray[kHCfl);

else if (fault array[k]=='B')

test array[k][jJ=1

else

test array,[kllj]=O; '.

for(k=0:k<=N-1;++k) /*THIS PART PRODUCES TESTRESULT MATRIX *

f'or(j=1 ;j<T;++a)

printf(" %d '1,testarray[k][jj);

printf("\n\n")

/'END OF TEST SUBROUTINE ~

/-"THIS PART OF PROGRAM IS DRAWING THE NETWORK FOR DISPLAY" ~

50

.r %

#include <device.h>

#include <gl.h>
#define resetis TRUE

drawing()

int i,j>k,x,y,xl,yl,x2,y2,x3,y3,x4,y4,x5,y5;
int x6,y6,x7,y7,x8,y8,t ,r ,R;
char nuniber[20],Z;
float pi,theta~phi,rho,psi,tau;
short ang;

pi=3.1 416295;
ginit()
viewport(400.1 000,100,700);

cursoff();
color(BLUE);
clear(;
linewidth(4);
ortho2(-350.0,350.0, -350.0,350.0);
R=300;
r=20;
x=R*cos(pi/2);

y=R~si~pi/2.

x3=x+r~cos(5*pi/4);

y3=y+r*sin(5*pi/4);
x4=x+r*cos(pi/4);
y4=y+rsin(pi/4);
x5=x+r*cos(7*pi/4);

y5=y+r*sin(7*pi/4);
x6=x+r*cos(3*pi/4);

y6=y+r*sin(3*pi/4);

for(k=0;k<=N-1 ;++k)

i=k+1 ; '.U

if(i>=N)

i=i-N;,

ang=(-3600.0/N);
rotate~ang, 'Z');
while(getbutton(MOUSE3) >=1);

if (fault-array[i]=='B' && disable array[i]=='D')

color(CRED);
circfi(x,y,r);

color(BLACK);
move2i(x) ,y3);

draw21(x4,y4);
move2i(x5,y5);

draw2i(x6,y6);

51

z Z!C5,

T7-S

if(fault_array[i]=='B' && disable_array[i]=='E')N

circfi(x,y,r);
color(BLACK);

move2i(x3,y3);

draw2i(x4,y4);I

if(fault-array~i]=='G & disable arrayli]=='E*)

color(GREEN);
J

circfi(x~y,r);
5

if(±'ault-array[i]=='G' && disable-array[i]==D')

color(RED);
circf'i(x,y~r);

color(WHITE);
cmov2i(x+30,Y+30);
sprintf(riumber. "U%d" ,i);

.charstr (number);%
for(j=1 ;j<=T;++j)

l=J+i ;

1=1-N;

if (test_array[l][jJ==l)

color(RED);

if(test_array[11[j]==0)

color(GREEN);

theta=2*pi+(pi/2)-(2*pi/N)*J ;
phi=pi/2-(pi/N)*J;
rho=pi/2-(24.pi/N)*j;
psi=(pi/N)*j

tau=pi/6;
xl =r*sin(phi)

x2=R~cos(theta)-r*cos(phi.rho);
y2=R*sin(theta)+r5.sin(phi-rho);
x7=x2 -r*sin(pif2-psi-tauf2);
y7=y2+r*cos(pi/2-psi-tau/2);
x8=x2-r*cos(psi-tau/2);

52 %

x7=x2-r*sin(pi/2-psi-tau/2);I
y7=y2+r~cos(pi/2-psi-tau/2);
x8=x2-r*cos(psi-tau/2);
y8=y2+r*sin(psi-tau/2);

move2i(xl ,yl);
draw2i(x2,y2);

draw2i(x7,y7);

move2i(x2,y2);
draw2i(x8,y8);

while(getbutton(MOUSE1) 1=1);

gexit(;

/* THIS PART DETERMINES THE INITIAL CONDITIONS AND DISPLAYS

THE SYSTEM IN INITIAL CONDITIONS *

disable(

printf("ENTER THE NUMBER OF ENABLED NODES\n");
scanf("%d"1,&no-en-set);

printf("ENTER THE MINIMUM NUMBER OF FAIL TEST RESULTS BY");
printf("ENABLED PROCESSORS WHICH DISABLE THE TESTED "1);

printf("PROCESSOR \n");
scanf ("%d" ,&dis crit);

{o~=~<NI+i

disable-array[i]='D';

count=0;
j=1;
printf("ENTER THE ENABLED UNIT NUMBER ONE AT A TIME \n");
while(countno-en-set) /* repeat until all units are

entered ~

scanf ("1%d", &i
if (i>N- ;i(o)

printf("UNIT NUMBER IS NOT VALID,TRY AGAIN]\n");

else if (disable-array[i]=='E')

printf("THIS UNIT IS PREVIOUSLY DEFINED AS ENABLED,");
printf("TRY AGAIN]\n\n");

else

disable array[iIJ='E';
printf("ENABLED UNIT #%d IS U%d\n\n",j,i);
printf("disablearray[%dl=%c\n",i,disable-array[i]l);

53 '

drawing(;

/* THIS PART OF THE PROGRAM DETERMINES ENABLED AND DISABLED

NODES AFTER THE ITERATION,DISPLAYS THE SYSTEM ~

apply()

for (k=O;k<=N-1;++k)

count=0;
for(j =1 ;j(<=T;+-j

1=k-j;
if(1<0)

1=1+N;

if((testarray[k][j]==1) && (disable_array[l]=='E'))

++count;

if (count>=dis-crit)

dis -res -array~k]='D';
printf("\n");

if (countdis-crit)

dig_res array[k]='E';

for(k=0;k<=N-1 ;++k)

printf("'dis-res array[%dIV%c\n",k,dis-res-array[k]);

for(k=0;k<=N-1 ;++k)

disable array[k]=dis res-arraytk];

drawing(;
printf("\nn" I;

#include "gl.h"
#include s<stdio.h>
#inclIude <device .h>

maiio)

54S

ginit();
cursoff();
color(WHITE);
clear(;
textport(0,350,10, 900);
linewidth(6);
whiJle(response 1=6)

menu();

scanf("%d" ,&response);

if (response==1)

introduction();

if (response==2)

sys set up(;

if (resporise==3)

test();

if (response==4)

disable(;

if (response==5)

apply();

printf(" PROGRAM IS OVER \n");

55 U

APPENDIX B

HAND CALCULATION OF DIFFERENT CASES

Case 1. A five unit multiprocessor system, U2 and U3 are faulty units and shown

underlined. Test results are worst case, disabling criteria is 1. In the matrix shown below

testing units are placed on the x axis, tested units are placed on y axis.

U4 Ua

U0 0 1

U0 U4

Ui 0 0

U1 Uo

U12 1 1 s

1.12 U1
la 0 1

U4 1 1

a. first iteration with I.C

UI, U2, U3 are enabled

UO, U4 are disabled

b. second iteraton

Ui is enabled

U0, U2, U3, U4 are disabled

c. third iteration

UO, U1, U4 are enabled

U2, U3 are disabled

* all faulty nodes are disabled, all fault-free nodes are enabled

56

€'._ ,..,rZC_ ,. ,w,_e_ _€ ",. a, , z,,-€ "l", .'. ",'.' ,i , ,".,,'-,,' ,,C.. J,"gC. ,g.'. '.. j. .' .'{__, . .. ,,,ri_,' ,'j,'..,,¢ g ¢.

Case 2. A five unit multiprocessor system, with U2 and U3 are faulty units and I
enabled initially. Test results are arbitrary (user defined) case and disabling criteria is 1.

Arbitrary test results have shown underlined.

U4 U3

Uo 0 0

UO U4

U1 0 0

Ui UO

1U2 1 1

2 UI

Ila .0 1

Lia L12

U4 0 1

a. first iteration with .C

_- UO, U1, U2, U3 are enabled

"S' U4 is disabled

b. second iteration

Uo, Ui are enabled

U2, U3, U4 are disabled

c. third iteration

Uo, Ut, U4 are enabled

U2, U3 are disabled
* all faulty nodes are disabled, all fault-free nodes are enabled.

57
Sil

MF- L L V. 7'- I, -4 =Vs ;. .1 . S se. ' t . , S tS.

Case 3. A five unit multiprocessor system, Ui and U4 are faulty units and enabled

initially. Test results are worst case, disabling criteria is 2.

U4 U3

U0 0 0

V1j Uo

U2 1 0

U2 U1

U3 0 1.

U3 U2

a. first iteration with L.C

all nodes are enabled

b. second iteration

UO, U1, U2, U3 are enabled

U4 is disabled

" system stays in that state forever

" so system is not 2-fault 2-correctable

Case 4. This system is the same as case 3. Only the test results are arbitrary case.

114 U3I

U0 114

1 U0

583

~.' *~~V'dJ **. 5."S~ S\ ~ ~ ~ . VV .* .* A

U2 1 0

U2 111

U3 0 1,

U3 U2

114 1 1

a. first iteration with I.C

all nodes are enabled

b. second iteration

UO, U2, U3 are enabled

Ui, U4 are disabled

• all faulty nodes are disabled, all fault-free

enabled.

Case 5. A seven unit multiprocessor system, with U1, U3, U5 are faulty and enabled

initially. Test results are worst case and disabling criteria is 1.

U6 III U1

UO 0 1 0

UO U6 Ild

.UIj 1 1 0 ,7

ILI UO U6

U2 1 0 0

U2 Uj UO

la 1 0 1

ia U2 _U1

U4 1 0 1 7

U4 U3 U2

_td 1 0 1

59 "

61
III U4

U6 U U4 Ua

U6 1 0 1

a. first iteration with I.C M.

U1, U3, U5 are enabled
UO, U2, U4, U6 are disabled

system stays in that state forever. So system is not 3-fault 1-correctable •.)

Case 6. This system is the same as previous case, but disabling criteia is 2.

a. first iteration with I.C

UO, U1, U2, U3, U5 are enabled

U4,U6 are disabled

b. second iteration

UO, U1, U2, U5 are enabled

U3, U4, U6 are disabled

c. third iteration

UO, UI, U2, U4, US, U6 are enabled

U3 disabled
.,-

d. fourth iteration

U O , U 2 , U 4 , U 6 a r e e n a b l e d_" --

UI, U3, U5 are disabled

* all faulty nodes are disabled, all fault-free nodes are enabled.

Case 7. A seven unit multiprocessor system, U1, U3, U5 are faulty units and enabled

initially. Test results are arbitrary case, disabling criteria is 2.

U6 115 U4 5 '

Uo 0 1 0 - ,

U O U 6 l1"

U1 U0 U6

U2 1 0 0

60]
0,.

U2 U1 UO

U3 1 0 1

1J.3 U2 1

U4 1 0 0

U4 Ia U2

IL U4 ha

U6 O 0 1

a. first iteration with LC

all nodes are enabled

b. second iteration

UO, U2, U4, U6 are enabled

U1, U3, U5 are disabled
I.

* all faulty nodes are disabled, all fault-free are enabled

Case 8. A seven unit multiprocessor system, Uo, Ui, U3, U4 are faulty units and UI,

U3, U4 are enabled initially. Test results are worst case, disabling criteria is 1.
.5.

U6 U5 1A
12o 1 1 0

U U6 U5

121 0 1 1 I.

hI Uf U6

U2 1 1 0

U2 11 ho

ha 1 0 0

Il U2 UI

.U4 0 0 0

114 5L U2

61
p.

: 61

_ !
*5-

- -5 - 5 - .l. % ~ . %

U5 1 1 0

U5 J _1,3

U6 0 1 1

a. first iteration with I.C

UO, U 1, U3, U4 are enabled

U2, U5, U6 are disabled

* system stays in that state forever. So it's not 4-fault 1-correctable.
4.

Case 9. This case is the same as the previous case, except the test results are

arbitrary case.

U6 U5 114

LO 1 1 1

1 U6 U5

V14 0 1 1

U~j 110 U6

U2 1 0 0

U2 U, Ila

Ila 1 1 o

114 U2 U1i
.- 4 1 1 Q

.1'

U4 3 U2

U5 1 0 0

U5 I

U6 0 1 0

a. first iteration with I.C

Ui is enabled

UO, U2, U3, U4, U5, U6 are disabled

62

Ii'
5. --- ,",%w " % '"" " " " " " " " '' " " ,.". . - . - / . . ", . " , " ," € * ,'€ "' " .' f r - *€ .V , #" " ' " " . . *' " " ' " " " " " " " *" "" " " " d" " "" " * P"

"
' "

b. second iteration

UO, UI, U4, U5, U6 are enabled

U2, U3 are disabled

c. third iteration

U4 is enabled

UO, UI, U2, U3, U5, U6 are disabled

d. fourth iteration

UI, U2, U3, U4 are enabled

UO. U5, U6 are disabled

e. fifth iteration

Ui is enabled and UO, U2, U3, U4, U5, U6 are disabled.

* This is iteration #1.So system is not 4-fault, 1- correctable.

Case 10. This system is the same as case 8, disabling criteria is 2 in this case.

The test results will be the same as in case #8.

a. first iteration with I.C

UO, UI, U2, U3, U4 are enabled

U5, U6 are disabled.

b. second iteration

UO, UI, U3, U4 are enabled

U2, U5, U6 are disabled

c. third iteration

UO, UI, U3, U4 are enabled

U2, U5, U6 are disabled

* This is I.C (initial condition) state, system stays in that loop for ever. That means

system is not 4-fault 2-correctable.

Case 11. This is the same as case 9, disabling criteia is 2 in this case.

Test results will be the same as in case #9.

63

a. first iteration

all nodes are enabled

b. second iteration

U2, U5, U6 are enabled

UO, UI, U3, U4 are disabled

* all faulty units are disabled, all fault-free units are enabled.

Case 12. An eight unit muliprocessor system, UO, U3, U5, U7 are faulty units and

UO, U3, U5 are enabled initially. Test results are worst case, disabling criteria is 1.

U7 U6 II

UO 0 1 0

110 12 U6

U1 1 1 0

Ui 1~ IQ II

U2 0 1 1

U2 U1 U8

La 1 1 0

Ila U2 UI

U4 1 0 0

U4 La U2

La 1 0 1

L u4 La

U6 1 0 1

U6 Ild U4

L. 1 0 1

a. first iteration with L.C

UO, U3, U5, U7 are enabled

64

- ~ ~ .~-.*. ~,fN V.'%...%%. ~dJ..

U2, UI, U4, U6 are disabled

* system stays in that forever. So system is not 4-fault, 1-correctable.

When we try to simulate if the system is 2-correctable.

We can easily see that UO will never be disabled in that case. So system is not
2-correctable either.

Case 13. This the same as case 12, but test results are arbitrary and disabling

criteria is 2.

U6 UL
UOa 0 1 1

VLQ .1 U6U1 1 2 u0

U1 U10

U2 0 1 0

U2 U1 .Uf

113 1 1 0

13 U2 UI

U4 l 0 0

U4 Ila U2

* LL 1 .1 1

1.3 U4 lai

U6 a 0 I

U6 III U4

1.21 01 1

a. first iteration with I.C

all nodes are enabled.

b. second iteration

U1, U2, U4 and U6 are enabled

65

N WY - WOVV V.. I Z

UO, U3, U5, U7 are disabled

* all faulty units are disabled, all fault-free units are enabled.

Case 14. A nine unit multiprocessor system, UO, U1, U2, U3 are faulty units and Uo,

U2, U3 are enabled. Test results are worst case, disabling criteria is 1.

U8 U7 U6 U5

1110 1 1 1 1

U0.Q U8 U7 U6
J0 Uii 0 1 1 1

III U U8 U7

UZ 0 0 1 1

UZ _.U1 40 U8

11 0 0 0 1

U a I iz L Ih

U4 1 1 1 1

U4 a La ui

U5 0 1 1 1 e

U5 U4 LUa L

U6 0 0 1 1

U6 U5 U4 La

U7 0 0 0 1

U7 U6 U5 U4

U8 0 0 0 0

a. first iteration with I.C

UO, U 1 U2, U3, U8 are enabled

U4, U5, U6, U7 are disabled

b. second iteration

U8 is enabled

66

1AI

all the others are disabled

c. third iteration

U4, U5, U6, U7, U8 are enabled

UO, U1, U2, U3 are disabled

+ all faulty nodes are disabled, fault-free nodes are enabled.

Case 15. A nine unit multiprocessor system,Uo, U3, U5, U8 are faulty units and U3,

U5, U8 are enabled. Test results are arbitrary case, disabling criteria is 1.

la U7 U6 UL

h O 1 1 1i

118 LI U7 U6

U1 i 0Q 0 0

Ui Uo La U7

U2 0 1 1 0

U2 Ui UI Ua

Ua _Q I) i

Ila U2 UI Vho

U4 1 0 0

U4 U3 U2 U1

Lal 0 1 1

U5 U4 Ua U2

U6 1 0 0 0

U6 La U4 La

U7 0 0 0 1

U7 U6 La U4

U" Q

a. first iteration with I.C

UI, U5, U8 are enabled

67

~ % %V.W I..%~ v - ~ %q.. ~ ~ % % ~ - V".-,

WVWp.

UO, U2, U3, U4, U6, U7 are disabled

b. second iteration I%

UI, U4, U8 are enabled

UO, U2, U3, U5, U6, U7 are disabled

c. third iteration

U1, U4, U6, U7 are enabled

UO, U2, U3, U5, U8 are disabled

d. fourth iteration

UI, U2, U4, U6, U7 are enabled

UO, U3, U5, U8 are disabled

* All faulty nodes are disabled, all fault-free nodes are enabled.

Case 16. This the same as previous case but disabling criteria is 2.

a. first iteration

UO, U1, U2, U3, U4, U5, U6, U8 are enabled

U7 is disabled

b. second iteration

U 1, U4, U6 are enabled '

UO, U2, U3, U5, U7, U8 are disabled

c. third iteration

UO, UI, U2, U3, U4, U6, U7 are enabled

U5, U8 are disabled 5.,

d. fourth iteration

U1, U2, U4, U6, U7 are enabled

UO, U3, U5, U8 are disabled.

* All faulty nodes are disabled, all fault-free nodes are enabled.

Case 17. This case is the same as case 15, but disabling criteria is 3.

a. first iteration

all nodes will be enabled

68

1U

b. second iteration

U1, U2, U4, U6, U7 are enabled

UO, U3, U5, U8 are disabled

* All faulty nodes are disabled, all fault-free nodes are enabled.

Case 18. A nine unit multiprocessor system, UI, U3, U5, U8 are faulty units and UI, fl

U3, U5 are enabled. Test results are worst case, disabling criteria is 2.
,. 4.

LIS U7 U6 _11dA

UO 1 0 0 1

UO LI U7 U6

i. 1 0 1 1

1.1 UO U8 U7

U2 1 0 1 0

U2 Li Uo Ila

L-a 1 0 1 0

U2 _U1 UO

U4 1 0 1 0

U4 U3 U2 U1

Li 1 0 1 0"

A La U4 Ila U2

U6 1 0 1 0

U6 U5 U4 La

U7 0 1 0 1
ot.

U7 U6 L5 U4

La 1 1 0 1

6'9

69 f,

* ~ - ,

a. first iteration with LC

UO, U1, U2, U3, U5, U8 are enabled

U4, U6, U7 are disabled.

b. second iteration

UI, U5, U8 are enabled

UO, U2, U3, U4, U6, U7 are disabled.

c. third iteration

UI, U3, U4, U5, U6, U7, U8 are enabled

UO, U2 are disabled.

d. fourth iteration

U3, U5 are enabled.

UO, U1, U2, U4, U6, U7, U8 are disabled.

e. fifth iteration

UO, U1, U2, U3, U4, U5, U8 are enabled

U6, U7 are disabled.

f. sixth iteration

UI, U8 are enabled

UO, U2, U3, U4, U5, U6, U7 are disabled.

* System is not 4-fault 2-correctable.

Case 19. A six unit multiprocessor system, U i, U3, U5 are faulty units and only Ui

is disabled, all the other units are enabled. Test results are arbitrary case, disabling

criteria is 2.

Ild U4

UO 0 0

Uol iL

l UI

70
[a°

a a, a, P~ %* *~ *

U2 0 0

U2 Ui
1 1,5

U2

U4 0 0

U4 U3

a. first iteration

UO, U2, U3, U4 are enabled

UI, U5 are disabled.

b. second iteration

UO, UI, U2, U3, U4 are enabled.

U5 is disabled.
.

c. third iteration

UO, UI, U2, U4 are enabled.

U3, U5 are disabled.

d. fourth iteration 'I

UO, U1, U2, U4, U5 are enabled.

U3 is disabled.

e. fifth iteration

UO, U2, U4, U5 are enabled.

UI, U3 are disabled.

f. sixth iteration

UO, U2, U3, U4, U5 are enabled.

Ui is disabled.

*That is I.C state and system oscillates and returns to I.C state in every six iteration.

7.

71

,.-.-.-...............--.-... ...- . -- -- - - - - . -- - -- - ,- - - . -- - -

LIST OF REFERENCES

1. J.H. Wesley, et. al., "SIFT: Design and analysis of fault tolerant computer for
Aircraft Control," Proc. of IEEE,Vol. 66, No. 10, pp. 1240-1255, October 1978.

2. F.P. Preparata, G.Metze, and R.T.Chien.,"On the connection assignment problem of
diagnosable systems," IEEE Trans. on Comp., Vol. C-16, pp. 848-854, Dec. 1967.

3. K.Y. Chwa and S.L.Hakimi, "Schemes for fault tolerant computing: A comparison of
modularly redundant and t-diagnosable systems," Inform. and Control, Vol. 49, No. 3,
pp. 212-238, June 1981.

4. Arthur D.Friedman and Luca Simoncini, "System level fault diagnosis," IEEE Trans.
on Comp., Vol. 13, p. 47-2, March 1980.

5. Simoncini Karunanithi and A.D. Friedman,"System diagnosis with t/s diagnosability,"
Proc. of the 7 th Fault-tolerant Comp. Symp., pp. 65-71, June 1977

6. M.L. Blount, "Probabilistic Treatment of Diagnosis in Digital systems, Proc. 7th Intl.
Conf. on Fault Tolerant Computing, pp. 72-77, June 1977.

7. J.T. Butler, "On the design of distributed diagnosable multiprocessing systems,"
Naval Postgraduate School Monterey, CA, research proposal.

8. A.L. Hopkins, T.B. Smith, and J.H. Lala," FTMP-A highly reliable fault-tolerant
multiprocessor for aircraft," Proc. of IEEE, Vol. 66. No. 10, pp. 1221-1239,
October 1978.

9. R. Nair, G. Metze and J. Abraham, "Design Considerations for Fault -Tolerant
Distributed Digital Systems," unpublished manuscript.

10. S. Mallela and G. Masson, "Diagnosable systems for intermittent faults," IEEE Trans.
on Comp., Vol. C-27, pp. 560-566, 1978.

11. Stephan G. Kochan "Programming in C," Hayden Book Company, 1983.

7

r24.:
SI

V

INITIAL DISTRIBUTION LIST

No.copies
1. Defense Technical Information Center 2

Cameron Station
Alexandra, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering.
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Jon T. Butler, Code 62 BU 5
Department of Elecrical and ComputerEngineering.
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Bruno 0. Shubert, Code 55 SY 1
Department of Operational Analysis
Naval Postgraduate School 6N

Monterey, CA 93943

6. Dr. Dana E. Madison, Code 52 1
Department of Computer Science %,Naval Postgraduate School '

Monterey, CA 93943
7. Dr. Joo Kang Lee 1

POSTECH Research Institute of Science
and Technology
PO.Box.125, Pohang City
Kyungbuk 680 KOREA.

8. Director of Research Administration, Code 012 1
Naval Postgraduate School
Monterey, CA 93943-5000

9. Kara Kuvvetleri Komutanligi 1
Egitim Dairesi Baskanligi
Bakanliklar, Ankara, Turkey

10. Kara Harp Okulu "
Bakanliklar, Ankara, Turkey

73..

11. Muhabere Okul Komutanligi 1
Mamak, Ankara, Turkey

12. Capt. Ibrahim Dincer 1
Muhaber okulu
Ogretim Kurulu
Mamak, Ankara, Turkey

13. Ltjg. Mustafa Paktuna I
Marmara cad. No: 158/6
Kocamustafapasa, Istanbul, Turkey

114. Dr. Andre von 7lbborg

Code 1133
ONR
800 N. Quincy

Arlington, VA 22217

15. Dr. George Abraham 1
Code 7500
NRL
4555 Overlook Ave. S.W.

Washington, DC 20375 ">

16. Dr. Lou Schmid
ONT 20T

800 N. Quincy Ave. Room 811
Arlington, VA 22217

I

Q%

74

.........

wcb

g/Llfr)EZ

/7oM~

- ~ ~'~-=~*~I
~v~: ~ *.

